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Water and Energy Sustainability

. CH, N,0 HFCs PFCs

Concerns with fresh water scarcity and greenhouse gas emissions
are leading to new technologies



Direct Contact Membrane Distillation

Warmer Feed Stream Cooler Distillate Stream

Hydrophobic, Microporous Membrane



Advantage 1: Vapor Pressure Driving Force
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Driving force not significantly reduced at high salt concentrations



Current Interest iIn MD

s Treatment of high fouling and scaling feed waters
A Produced waters in oil and gas industry
A Valuable metal recovery in mineral harvesting
A Concentration of RO brines
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Advantage 2: Distillate-Quality Product

Low pressure RO
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Advantage 3: Compatible w/ Thermal Energy

Salinity Gradient Solar Pond

% / Membrane

Distillation

—>

Solar Thermal, Geothermal

Waste Heat —

- Machines (e.g., electrical and diesel generators)
- Heat exchangers (e.g., condensers, power plant cooling towers)




Newer Applications of MD

s Treatment of low fouling and scaling feed waters
A Water fApolishingo
Low molecular weight organics, urea, boron, arsenic

A Co nt a mamoval mding membrane distillation
for small water systemso

A Reconcentration of forward osmosis draw solution using waste heat

AA fully integrated membrane biorea
wastewater treatment in remote appl



Contaminant Removal
Using Membrane Distillation
for Small Water Systems

More than 94% of n at i 0 n Ovatermystermsisarve < 3,300 persons.
These systemsd classified as small by EPAS face unique challenges.



Project Overview

s MD - ideal for small systems in complex regulatory environment
A Simple treatment train
A Broad spectrum contaminant removal
A Operationwithlow-gr ade ( hemtast e 0)

S Objectives
A Characterize range of contaminants/contaminant classes MD can remove
A Develop small-scale pilot MD system w/ adaptable HX
A Deploy system and operate using on-site waste heat

S Hypotheses
A MD will achieve essentially 100% removal of non-volatiles
A Removal of volatiles and semi-volatileswi | | f ol lLaaww Henr y

Volatiles will evaporate faster than water at a rate proportional to their
inverseHe nr yos KQdJdFpl/apt :



Bench-Scale Results: lons and Metals Rejection
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Pilot-Scale Preparations: HX Installation

Hot Flue Gas

Waste heat source: boiler flue gas

Boiler Flue
Stack

Feedwater: DDW spiked with
representative contaminants

[ Heat

Exchanger

/ MD System
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A Fully Integrated Membrane Bioreactor
System for Wastewater Treatment in
Remote Applications



Osmotic Membrane Bioreactor for Potable Reuse

Wastewater

|

Sludge



Osmotic Membrane Bioreactor for Potable Reuse

Wastewater Concentrated draw solution
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¢ Water
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Diluted draw solution

FO as pretreatment for RO
Dual osmotic barrier



Potable Reuse Systems
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Potable Reuse Systems

Reversg Advanced
Osmosis Oxidation

Process
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Reverse Advanced
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OMBR with Membrane Distillation
for (Future) Direct Potable Reuse
at Military Forward Operating Bases
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Waste Heat at Remote Location

A Example forward operating base
(10,000 soldiers) has 19 MW,
max power capacity

A Producing 19 MW, results in 29
MW, of recoverable waste heat

A 29 MW, supplied to the
membrane distillation system
provides water for ~9,000 soldiers
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OMBR Aerobic/Anoxic Cycling

Hypothesis Highretention biological treatment process can be developedingle reactor with
automated control system tadjust chemical environment (i.e., aerobic vs. anoxic) based on real

time chemicakues
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OMBR Aerobic/Anoxic Cycling

Hypothesis Highretention biological treatment process can be developedingle reactor with
automated control system tadjust chemical environment (i.e., aerobic vs. anoxic) based on real

slelclolciale

Effluent

FOB gray and/or
black water

Microbial
Ecology

Maintain microbial community
during air cyclingnd

exposure to high TDS and
temperature.



OMBR Aerobic/Anoxic Cycling

Hypothesis Highretention biological treatment process can be developedingle reactor with
automated control system tadjust chemical environment (i.e., aerobic vs. anoxic) based on real

QRS

Effluent

FOB gray and/or
black water

ST i Membrane
Sllilsllelleit

Fouling
Air off Z{i}ﬁ

Air scour has been shown to
maintain flux in longerm
operation



Bench-Scale FO System

Osmotic backwash during anoxic cycles Air scour during aerobic bioreactor cycle

Air Scour Cell

T

Air Aeration Feed
Inlet Manifold Solution

Membrane Test Cell



